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Introduction

Biodynamic preparations were invented by Rudolf Steiner (Ref. 3) and have been developed further since.
They are intended to treat fields to improve yield and fertility in place of chemical treatments. The
preparations are stirred ideally by hand for one hour. While this is satisfactory for use in gardens or perhaps
smallholdings, for large farms some form of mechanical stirring has been found to be necessary to create the
quantity required in a reasonable time. The rationale of the preparations is to harness cosmic forces which
promote the health and growth of plants, an aspect reaching beyond the current materialistic scientific
paradigm. Steiner stressed the importance of the human hand in mediating such cosmic forces, and so was
concerned about purely mechanical methods.

The invention of the Flowform by A. John Wilkes (Ref 6) opens up the possibility of a rhythmic way of
stirring the preparations (than mere mechanical stirring) that is more in accord with the cosmic and life
processes involved. Flowforms have been used to good effect in this way (ibid). A question arises as to the
design of the Flowform involved, and to date the Flowforms used were "off the shelf", not specifically
designed for the purpose. This paper describes an approach to designing a Flowform specifically for stirring
biodynamic preparations.

Mathematical Approach

A Flowform consists of two adjacent basins with a channel between them such that water flows into the
channel and then diverts into the basins before flowing out, which yields a rhythmic vortex-like movement
in each basin (Ref 6). The surfaces of the basins may be mathematically designed, which had been tried
successfully by John Wilkes many years ago (ibid). Such surfaces may be vortical path curves (see Refs. 1
and 5 for an introduction to path curves) which have the advantage that they explicitly involve a polarity
between point-like and plane-like processes. This is envisaged to capture an interaction between earthly and
cosmic forces respectively.

The simplest surface based on path curves has a central axis of symmetry with vertical cross-sections that
may be egg-shaped or vortex shaped, as illustrated in the following diagram:
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Figure 1

The top line shows a series of eggs of increasing "sharpness", measured by the parameter A, so that an
ellipsoid arises for A=1, and already with A=10 the form is nearly conical. The shape is actually formed by
path curves which spiral upwards about the axis of symmetry and all pass through a horizontal circle centred
on that axis. Then all horizontal cross-sections are circles. Now circles are special cases of path curves, so
the shape is woven of two sets of intersecting path curves. There are many sets of intersecting path curves
that produce the same shape, for example one path curve could be taken winding in the opposite sense about
the axis, and then the set of curves shown would all intersect it. Similar considerations apply to the vortices
in the second row. The bottom row shows eggs all with same A but with path curves of distinct steepness,
controlled by a parameter € (Ref 5). If €=0 the path curves become horizontal circles.

More general surfaces woven of path curves may be obtained by taking the horizontal cross-sections as
logarithmic spirals instead of circles.

Figure 2



The figure shows part of such a surface where vertical vortex path curves all of the same A intersect the
spiral to make up the surface. Every horizontal plane intersects the surface in a logarithmic spiral.

The vertical cross-sections have a definite A-value as we have seen. However a spiral path curve may exist
in the surface, and it will have a different A-value, as may be appreciated by rotating all the points of such a
curve horizontally into a fixed vertical plane. Because we have horizontal spirals instead of circles those
points will not lie on a vertical cross-section of the surface. For this reason we use A to characterise the
spiral path curves in the surface, and |1 for the "A-value" of the vertical cross-sections. The formula relating
the parameters of the spiral path curves (Ref. 1 Appendix 2) is
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so that the formula relating A, i and € is
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is the parameter of the logarithmic spirals in the equation r=r,e’’. If B=0 the spirals degenerate to
g 0 g

circles as r is constant with varying 8, and then from (1) U=A and the distinction between [l and A vanishes.

Since (1) is linear in all its variables, we may freely choose any three of the parameters to find the fourth.
Setting the denominator to zero gives U= 1.e. a conical spiral surface, for S (/\—|- 1)226. The surface
itself is uniquely defined by W and B (c.f. Figure 2 where U defines the vortex profiles and B the spiral), and
clearly many combinations of A and € satisfy (1) for a given surface. For our present purposes we will be
interested in two particular sets of path curves for a given surface, namely the asymprtotic curves of the
surface (see below). We will find that two sets of such curves uniquely define a surface of the above type,
and this will be used to define a surface based upon the A-values of a cow horn and a water vortex.

Asymptotic Curves

As already stated, a path curve involves a polarity between point-like and plane-like processes which is
envisaged to capture an interaction between earthly and cosmic forces respectively. This is because such a
curve may be generated point wise using a linear collineation of points, and also plane wise using a linear
collineation of planes. In the latter case a developable is obtained from the sequence of planes which is
polar to the points of the former method. A developable possesses a cuspidal edge which in the case of a
dual linear transformation is the same curve as the path curve. Hence there is an intimate relation between
the earthly point-based process and the cosmic plane-based one. The asymptotic curves of the surfaces
considered in this article are also path curves with that property, and mediate between the inward-looking
earthly aspect of positive curvature and the outward-looking cosmic aspect of negative curvature. Now we
will briefly describe what asymptotic curves are.
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Figure 3

The regulus shown is a ruled surface 1.e. it is completely covered by two sets of straight lines (truncated for
convenience) called rulers. Horizontal planes cut the surface in circles in this case. The curvature of a circle
1s said to be positive because the principal normal to the curve at a point is directed inwards. Vertical cross
sections such as that of the diagram cut the surface in hyperbolas, which have negative curvature since the
principle normal at a point is directed outwards. Now imagine a plane rotating about a diameter of one of
the circular cross-sections. If it starts out horizontal then it cuts the plane in a curve with positive curvature,
but when it becomes vertical the curvature has become negative. One position of the plane will contain a
ruler, where the curvature changes from positive to negative. Clearly the rulers are not curved, or may be
said to have zero curvature, and are thus the curves of transition from positive to negative curvature.
Although they are not curves in this case, being straight lines, they are however examples of asymptotic
curves. Any curve in the surface which is tangential to a ruler at a point P has zero curvature at P, whereas a
curve through P not tangential to a ruler has non-zero curvature at P. The ruler marks the direction at which
a transition from curves with positive to those with negative curvature occurs. The ruler thus defines an
asymptotic direction at which this change of sign occurs.

However, the surface depicted in Figure 2 also has asymptotic curves (not shown) which are not straight
lines as the surface is not ruled. At a point P of the surface there are two asymptotic directions which have
the same relation to the surface as the rulers in Figure 3 for the regulus, these directions being tangents to
the surface at P. Starting from such a direction at P we can move P in the surface to describe a curve such
that every one of its tangents is an asymptotic direction. The resulting curve is an asymptotic curve of the
surface, and there are two such curves passing through every point of the surface. Clearly the tangent to an
asymptotic curve is also tangential to the surface, as was obvious in the case of the regulus. The figure
below shows a set of horizontal spirals defining a path curve surface, and two of the asymptotic curves are
shown, one of each type:

Figure 4



Asymptotic curves are described in Ref. 4 with special reference to asymptotic path curves. It is shown
there that given two suitably related values of A it is possible to find a surface defined by W and B with
asymptotic path curves having those A-values. If these are A, and A, then it is shown that
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The denominator in (2) must be negative for real B so that either
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The two As must be chosen accordingly, at least one being negative.

Flowform Design

The biodynamic preparations are made using various ingredients together with water and cow horns. A
water vortex profile approaches closely a vortex path curve, especially near the top, with A=-2.9 on average
(Ref. 2), and a cow horn has curves in its surface which were determined by the author to be path curves
with A=-1.5. Substituting these two values in equations (2) and (3) gives JU=-1.792 and B=0.484. Figure 4
shows the resulting asymptotic curves and logarithmic spirals for this solution. The following figure shows
an impression of the surface for a 15cm drop in height:
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while the diagram below shows how a portion of the surface was used four times to design the actual
Flowform:

Figure 6

Programs developed by the author enabled the above design work to be carried out, and the spatial
coordinates to be extracted for making the required templates for the actual construction.

Conclusion

The idea of the author to derive a surface from two path-curve A-values for its two sets of asymptotic curves
worked out well, and the resulting Flowform design was derived from that by John Wilkes and the author,
and then the actual Flowform was made by Nick Weidmann and John Wilkes. The resulting Flowform
functions well, naturally after considerable detailed sculptural work to fit the mathematical surface into a
practically functioning Flowform.

The same idea could be used to design Flowforms for other uses such as mixing medicines where the A-
value of, say, a plant bud related to the medicament was used, noting that within the constraints cited one A-
value may be positive, as for a bud.
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